Search results for "Scanning microwave microscopy"

showing 5 items of 5 documents

Imaging of Located Buried Defects in Metal Samples by an Scanning Microwave Microscopy

2011

Abstract A non-destructive method is proposed to detect the located buried defects using scanning microwave microscopy. Based on the “skin effect”, our recent developments authorize 3D tomography with nanometric resolution. This technique associates the electromagnetic microwave measurement using a Vector Network Analyzer (VNA) with the nanometer-resolution positioning capabilities of an Atomic Force Microscope. At each used frequency, an incident electromagnetic wave is send to the sample and the reflected wave gives information on a specific depth layer in the material. With a large bandwidth of frequencies, a 3D tomography is allowed inside the material. With characteristic tools of nano…

Scanning microwave microscopyMaterials scienceAtomic force microscopybusiness.industryBandwidth (signal processing)Physics::Medical Physics3d tomographyNon-destructive methodGeneral MedicineElectromagnetic radiationOpticsMicroscopySkin effectTomographybusinessEngineering(all)MicrowaveProcedia Engineering
researchProduct

Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis

2016

The atomic force microscope (AFM) is a powerful tool for the characterization of organic and inorganic materials of interest in physics, biology and metallurgy. However, conventional scanning probe microscopy techniques are limited to the probing surface properties, while the subsurface analysis remains difficult beyond nanoindentation methods. Thus, the present thesis is focused on two novel complementary scanning probe techniques for high-resolution volumetric investigation that were develop to tackle this persisting challenge in nanometrology.The first technique considered, called Mode Synthesizing Atomic Force Microscopy (MSAFM), has been exploited in collaboration with Dr. Laurene Teta…

Tomographie et reconstruction 3DMicroscopie à force atomique acoustique (MSAFM)Atomic force microscopy (AFM)[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsMode Synthesizing atomic force microscopy (MSAFM)Tomography anTomographie et reconstruction 3Dd 3D reconstruction[PHYS.PHYS] Physics [physics]/Physics [physics]Microscopie à force atomique micro-onde (SMM)Scanning microwave microscopy (SMM)Microscopie à force atomique (AFM)
researchProduct

A mucosal pellicle modifies the physical properties of epithelial

2017

International audience

[SDV.AEN] Life Sciences [q-bio]/Food and Nutritionsalivamucosal pellicleAtomic force Microscopy[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]cell model[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]mucosa[SDV.AEN]Life Sciences [q-bio]/Food and NutritionComputingMilieux_MISCELLANEOUSScanning Microwave Microscopy
researchProduct

Nanoscale Mapping of the Physical Surface Properties of Human Buccal Cells and Changes Induced by Saliva

2019

International audience; The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells’ surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces change…

Cell typeSalivaSurface Properties[SDV]Life Sciences [q-bio]Cellhuman buccal cells02 engineering and technology010402 general chemistry01 natural sciences[SPI]Engineering Sciences [physics]MicroscopyElectrochemistrymedicineElectric ImpedanceHumansNanotechnologyGeneral Materials ScienceSpectroscopyMUC1hydrophobicity[PHYS]Physics [physics]MouthsalivaChemistryMucinSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsTransmembrane protein0104 chemical sciencesScanning Microwave Microscopy SMMmedicine.anatomical_structureChemical force microscopydielectric propertiesBiophysicsChemical Force Microscopyfuntionalization0210 nano-technologyHydrophobic and Hydrophilic Interactions
researchProduct

MICRO-SCALE STUDY OF RESIDUAL STRESSES IN CR2O3 COATINGS SPRAYED BY APS

2020

International audience; Whichever the application field, every material forming process generates residual stresses on the surface. While they are likely to enhance the aimed properties of the final mechanical part, these stresses may also drastically reduce them and result in early failures. Therefore, understanding the residual stress state remains a major challenge when coating complex parts, especially as most characterization methods at the microscopic scale involve specific sample preparation procedures which may affect the residual stresses field. This work investigates the residual stress state that exists in chromium oxide coatings deposited via Atmospheric Plasma Spray (APS), usin…

Materials scienceForming processesengineering.materialMicrostructureMicroscopic scaleCharacterization (materials science)Stress (mechanics)CoatingResidual stresslcsh:TA1-2040Microscopy[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]engineeringGeneral Earth and Planetary SciencesComposite materialcoatings chromium oxides raman micro-spectroscopy residual stress scanning microwave microscopylcsh:Engineering (General). Civil engineering (General)General Environmental ScienceActa Polytechnica CTU Proceedings
researchProduct